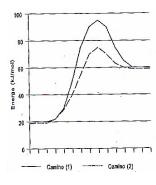
TEMA 4: EQUILIBRIOS QUÍMICOS


EJERCICIOS DE SELECTIVIDAD 96/97

- 1. a) ¿Influye la presencia de un catalizador en la constante de equilibrio de una reacción? Razone la respuesta.
 - b) ¿Modifica un catalizador la entalpía de una reacción? Justifique la respuesta.
 - c) Ponga un ejemplo de un catalizador y el proceso industrial en el que se utiliza.
- 2. En un matraz de 2 litros se introducen 12 g de pentacloruro de fósforo y se calienta hasta 300 °C. Al establecerse el equilibrio de disociación, a esta temperatura:

$$PCl_5(q) \longrightarrow Cl_2(q) + PCl_3(q)$$

la presión total de la mezcla es de 2,12 atm.

- a) ¿Cuánto vale el grado de disociación en las condiciones señaladas?
- **b)** ¿Cuál es el valor de K_p a esa temperatura? Masas atómicas: P = 31; CI = 35,5.

- 3. La figura muestra dos caminos posibles para cierta reacción química. Uno de ellos corresponde a la reacción en presencia de un catalizador positivo. Conteste, razonadamente, a las siguientes cuestiones:
- a) ¿Cuál de los dos caminos corresponde a la reacción catalizada?
- b) ¿Cuál es, aproximadamente, la energía de activación de la reacción no catalizada?
- c) ¿Cuál es la variación de entalpía de la reacción catalizada?
- **4.** A la temperatura de 400 °C y 710 mm de mercurio de presión, el amoníaco se encuentra disociado en un 40% según la ecuación:

$$2 \text{ NH}_3 (g) \implies N_2(g) + 3 \text{ H}_2(g)$$

Calcule:

- a) La presión parcial de cada uno de los gases que constituyen la mezcla en equilibrio
- b) El valor de las constantes $K_p \; y \; K_c \; a$ esa temperatura.

<u>Datos</u>: R = 0.082 atm $L K^{-1}$ mol⁻¹

5. En una vasija que tiene una capacidad de 3 litros se hace el vacío y se introducen 0,5 gramos de H_2 y 30 gramos de I_2 . Se eleva la temperatura a $500^{\circ}C$, estableciéndose el siguiente equilibrio:

$$I_2(g) + H_2(g) \implies 2 HI(g)$$

para el que K_c vale 50. Calcule:

- a) Moles de HI que se han formado.
- b) Moles de I_2 presentes en el equilibrio.

Datos: Masas atómicas: H = 1; I = 127.

6. A la temperatura de 650 K, la deshidrogenación del 2-propanol para producir propanona, según la reacción:

$$CH_3$$
 - $CHOH$ - CH_3 (g) \iff CH_3 - CO - CH_3 (g) + H_2 (g)

es una reacción endotérmica. Indique, razonadamente, si la constante de equilibrio de esta reacción:

- a) Aumenta al elevar la temperatura.
- b) Aumenta cuando se utiliza un catalizador.
- c) Aumenta al elevar la presión total, manteniendo constante la temperatura.
- 7. En el equilibrio:

$$C(s) + O_2(g) \implies CO_2(g)$$

- a) Escriba las expresiones de K_c y K_p
- b) Establezca la relación entre ambas.
- 8. En un matraz de un litro, a $440^{\circ}C$, se introducen 0,03 moles de yoduro de hidrógeno y se cierra, estableciéndose el equilibrio:

$$2 \text{ HI}(g) \Longrightarrow I_2(g) + H_2(g)$$

En estas condiciones la fracción molar del HI en la mezcla es 0,80. Calcule:

- a) Las concentraciones de cada gas y Kc
- b) La presión parcial de cada gas y Kp

Datos: Masas atómicas: H = I; I = 127.

EJERCICIOS DE SELECTIVIDAD 97/98

1. Para la reacción:

$$SbCl_5(g) \Longrightarrow SbCl_3(g) + Cl_2(g)$$

 K_p , a la temperatura de 128°C, vale 9,32 10^{-2} . En un recipiente de 0,4 litros se introducen 0,2 moles de pentacloruro y se eleva la temperatura a 182° C hasta que se establece el equilibrio anterior. Calcule:

- a) La concentración de las especies presentes en el equilibrio.
- b) La presión de la mezcla gaseosa.

Datos: R = 0,082 atm L K-1 mol-1

2. La constante K_c , para la reacción siguiente, vale 0,016 a 800 K;

$$2 \text{ HI } (g) \Longrightarrow H_2 (g) + I_2 (g)$$

En una mezcla en equilibrio a 800 K, calcule:

- a) La concentración de HI, cuando las de H_2 , e I_2 sean iguales, si la presión total del sistema es de 1 atm.
- b) Las concentraciones de los componentes si se duplica la presión del sistema.

<u>Datos</u>: R = 0,082 atm L K⁻¹ mol⁻¹

3. Para la reacción:

$$SnO_2(s) + 2 H_2(q) \implies 2 H_2O(q) + Sn(s)$$

El valor de K_p a la temperatura de 900 K es 1,5 y a 1100 K es 10. Conteste razonadamente, si para conseguir un mayor consumo de SnO_2 deberán emplearse:

- a) Temperaturas elevadas.
- b) Altas presiones.
- c) Un catalizador.

4. En el proceso en equilibrio:

$$CO(g) + 2 H_2(g) \Longrightarrow CH_3OH(I) \Delta H>0$$

Cuál o cuales de los siguientes factores aumentarán el rendimiento en la producción de metanol:

- a) Adición de un catalizador
- b) Disminución de la concentración de hidrógeno.
- c) Aumento de la temperatura.

5. Para la reacción:

$$PCl_5(g) \Longrightarrow PCl_3(g) + Cl_2(g)$$

El valor de K_c a 360°C es 0,58.

En un recipiente de 25 litros se introducen 2 moles de Cl_2 , 1,5 moles PCl_3 y 0,15 moles de PCl_5 .

- a) Calcule las concentraciones de todas las especies en equilibrio.
- b) Calcule las presiones parciales de cada una de las especies en equilibrio.

<u>Datos</u>: R = 0.082 atm $L K^{-1}$ mol⁻¹

6. Dado el equilibrio:

$$H_2(g) + I_2(g) \Longrightarrow 2HI(g)$$
 $\Delta H > 0$

Justifique la veracidad o falsedad de las siguientes afirmaciones:

- a) Al aumentar la concentración de hidrógeno el equilibrio no se desplaza porque no puede variar la constante de equilibrio.
- b) Al aumentar la presión total en equilibrio se desplaza a la izquierda.
- c) Al aumentar la temperatura el equilibrio no se modifica.
- 7. En un matraz de un litro de capacidad en el que se ha hecho el vacío, se introducen 0.0724 moles de N_2O_4 y se calienta a $35^{\circ}C$. Parte del N_2O_4 se disocia en NO_2 :

$$N_2O_4(g) \Longrightarrow 2 NO_2(g)$$

Cuando se alcanza el equilibrio la presión total es de 2,17 atm. Calcule:

- a) El grado de disociación del N₂O₄.
- b) La presión parcial del NO_2 en el equilibrio y el valor de K_c .

<u>Datos</u>: R = 0.082 atm.L/K.mol.

8. A $50^{\circ}C$ y presión de 1 atm, el N_2O_4 se disocia en un 40% en NO_2 , según la reacción:

$$N_2O_4(q) \Longrightarrow 2 NO_2(q)$$

Calcule:

- a) Las constantes de equilibrio K_c y K_p.
- **b)** El grado de disociación del N_2O_4 a la misma temperatura pero a una presión de 10 atm.

<u>Datos</u>: R = 0.082 atm $L K^{-1}$ mol⁻¹

EJERCICIOS DE SELECTIVIDAD 98/99

- 1. A 600 K y a la presión de una atmósfera, el pentacloruro de fósforo se disocia un 40% según la reacción: $PCl_5(g) \Longrightarrow PCl_3(g) + Cl_2(g)$
 - Calcule: a) K_D y K_C a esa temperatura.
 - b) El grado de disociación a 4 atmósferas de presión.

Datos: $R = 0.082 \text{ atm L K}^{-1} \text{mol}^{-1}$.

2. En un matraz de un litro de capacidad se introducen 0,387 moles de nitrógeno y 0,642 moles de hidrógeno, se calienta a 800 K y se establece el equilibrio:

$$N_2(g) + 3 H_2(g) \implies 2 NH_3(g)$$

Encontrándose que se han formado 0,06 moles de amoniaco. Calcule:

- a) La composición de la mezcla gaseosa en equilibrio.
- **b)** K_c y K_D a la citada temperatura.

<u>Datos</u>: $R = 0.082 \text{ atm } L \text{ K}^{-1} \text{mol}^{-1}$.

3. Las especies químicas NO, O_2 y NO se encuentran en equilibrio gaseoso a una determinada temperatura, según la reacción:

$$2 \text{ NO } (g) + O_2 (g) \Longrightarrow 2 \text{ NO}_2 (g)$$
 $\Delta H < 0$

Justifique en qué sentido se desplazará el equilibrio cuando:

- a) Se eleva la temperatura
- **b)** Se retira parte del O_2 .
- c) Se añade un catalizador.
- **4**. Se añade un número igual de moles de CO y H_2O a un recipiente cerrado de 5 L que se encuentra a 327° C, estableciéndose el siguiente equilibrio:

$$CO(g) + H_2O \implies CO_2(g) + H_2(g)$$

Una vez alcanzado éste, se encuentra que la concentración de CO_2 es 4,6 M y el valor de K_c es 302.

- a) ¿Cuáles son las concentraciones de CO, H_2 y H_2 O en el equilibrio?
- b) Calcule la presión total del sistema en el equilibrio.

 $\underline{\text{Datos}}$: R = 0,082 atm L K⁻¹mol⁻¹.

5. Se establece el siguiente equilibrio:

$$2 C(s) + O_2(g) \Longrightarrow 2 CO_2(g)$$
 $\Delta H^{\circ} = -221 \text{ kJ}$

Razone si la concentración de O_2 aumenta, disminuye o permanece invariable:

- a) Al añadir C(s)
- b) Al aumentar el volumen del recipiente.
- c) Al elevar la temperatura.

6. El tetróxido de dinitrógeno se disocia a 27° C según la reacción:

$$N_2O_4(g) \rightleftharpoons 2 NO_2(g)$$

En un recipiente de un litro de capacidad se introducen 15 gramos de N_2O_4 y una vez alcanzado el equilibrio la presión total es 4,46 atm. Calcule:

- a) El grado de disociación y Kp.
- **b)** La presión parcial del N_2O_4 y del NO_2 así como K_c .

Datos: R = 0.082 atm $L K^{-1}mol^{-1}$. Masas atómicas: N = 14; O = 16.

- 7. Razone la veracidad o falsedad de las siguientes afirmaciones:
 - a) Al añadir un catalizador a una reacción química, la velocidad de reacción se modifica.
 - b) Al añadir un catalizador a un equilibrio químico, éste se desplaza.
 - c) Los catalizadores modifican la entalpía de reacción
- 8. A 360° C se determina la composición de una mezcla gaseosa que se encuentra en equilibrio en el interior de un matraz de dos litros de capacidad, encontrándose 0,10 moles de H_2 , 0,12 moles de I_2 y 0,08 moles de HI. Calcule:
 - a) $K_c y K_p$ para la reacción: $I_2(g) + H_2(g) \Longrightarrow 2 HI(g)$
 - **b)** La cantidad de hidrógeno que se ha de introducir en el matraz para duplicar el número de moles de HI, manteniéndose constante la temperatura.

Datos: $R = 0.082 \text{ atm L } \text{K}^{-1} \text{mol}^{-1}$.

9. A partir de la composición de mezclas gaseosas de I_2 y H_2 a diferentes temperaturas se han obtenido los siguientes valores de K_p para la reacción:

$$H_2(q) + I_2(q) \rightleftharpoons 2 HI(q)$$

T (°C)	340	360	380	400	420	440	460	480
K _p	70′8	66′0	61′9	57′7	53′7	50′5	46′8	43′8

- a) Calcule K_c a 400°C
- b) Justifique por qué esta reacción es exotérmica
- c) ¿Variará K_p si se altera la concentración de H_2 ? Razone la respuesta.

EJERCICIOS DE SELECTIVIDAD 99/00

- 1. Indique, razonadamente, si las siguientes afirmaciones son verdaderas o falsas:
 - a) La velocidad de una reacción aumenta al disminuir la temperatura a la que se realiza.
 - b) La velocidad de una reacción aumenta al disminuir la energía de activación.
 - c) La velocidad de una reacción disminuye al disminuir las concentraciones de los reactivos.
- 2. En un recipiente de 2 litros se introduce una cierta cantidad de NaHCO₃, se extrae el aire existente en el mismo, se cierra y se calienta a 400°C produciéndose la reacción de descomposición siguiente:

$$2 \text{ NaHCO}_3(s) \implies \text{Na}_2\text{CO}_3(s) + \text{CO}_2(g) + \text{H}_2\text{O}(g)$$

Una vez alcanzado el equilibrio, la presión dentro del recipiente es de 0'962 atm. Calcule:

- a) La constante de equilibrio K_p de esa reacción.
- b) La cantidad de NaHCO3 que se ha descompuesto expresada en moles y en gramos.

<u>Datos</u>: Masas atómicas: H = 1; C = 12; O = 16; Na = 23.

- 3. Para el equilibrio: $I_2(g) + H_2(g) \implies 2HI(g)$, la constante de equilibrio K_c es 54'8 a 425°C. Calcule:
 - a) Las concentraciones de todas las especies en el equilibrio si se calientan, a la citada temperatura, 0,60 moles de HI y 0,10 moles de H_2 en un recipiente de un litro de capacidad.
 - b) El porcentaje de disociación del HI.
- 4. En la tabla adjunta se recogen los valores, a distintas temperaturas, de la constante del equilibrio químico:

$$2 SO_3(g) \implies 2 SO_2(g) + O_2(g)$$

T (K)	298 400		600	800	1000	
K _p	2'82 10 ⁻²⁵	1'78 10 ⁻¹⁶	1,98 10-8	1'29 10-3	2'64 10 ⁻¹	

- a) Justifique si la reacción anterior es endotérmica o exotérmica.
- b) Explique cómo afecta al equilibrio un aumento de la presión, manteniendo constante la temperatura.
- c) Calcule, a 298 K, la constante K_P del equilibrio:

$$2 SO_2(g) + O_2(g) \implies 2 SO_3(g)$$

5. A 613 K, el valor de K_c para la reacción:

$$Fe_2O_3(s) + 3 H_2(q) \implies 2 Fe(s) + 3H_2O(q)$$

es 0,064. Si en el equilibrio anterior, la presión parcial del hidrógeno es de una atmósfera, calcule:

- a) La concentración de hidrógeno.
- b) La presión total.

6. Suponga el siguiente sistema en equilibrio:

$$UO_2(s) + 4 HF(g) \longrightarrow UF_4(g) + 2 H_2O(g)$$

Explique hacia dónde se desplaza el equilibrio cuando:

- a) Se adiciona UO,(s) al sistema.
- **b)** Se elimina HF(g)
- c) Se aumenta la capacidad del recipiente de reacción.
- 7. A 523 K las concentraciones de PCl_5 , PCl_3 y Cl_2 en equilibrio para la reacción:

$$PCl_5(g) \longrightarrow PCl_3(g) + Cl_2(g)$$

son 0,809 M, 0,190 M y 0,190 M, respectivamente. Calcule a esa temperatura:

- a) Las presiones parciales de las tres especies en el equilibrio.
- **b)** La constante K_p de la reacción.
- 8. Se ha estudiado, a 298 K, la cinética de la reacción

$$A(g) \rightleftharpoons 2B(g)$$

Para ello, se han medido las concentraciones de las sustancias A y B a lo largo del tiempo. Los datos obtenidos se han representado gráficamente en la figura adjunta.

- a) Calcule la constante de equilibrio de la reacción anterior.
- b) Explique, razonadamente, cómo afectaría al equilibrio un aumento de la presión.
- c) Describa, razonadamente, cómo se

modificaría la gráfica anterior si la reacción se llevara a cabo en presencia de un catalizador.

9. En un recipiente se introduce una cierta cantidad de $SbCl_5$ y se calienta a $182^{\circ}C$, alcanzando la presión de una atmósfera y estableciéndose el equilibrio:

$$SbCl_5(g) \Longrightarrow SbCl_3(g) + Cl_2(g)$$

Sabiendo que en las condiciones anteriores el SbCl, se disocia en un 29'2%. Calcule:

- a) Las constantes de equilibrio K_{c} y K_{p} .
- **b)** La presión total necesaria para que, a esa temperatura, el SbCl, se disocie un 60%

Datos: R = 0.082 atm L K⁻¹·mol⁻¹.

EJERCICIOS DE SELECTIVIDAD 00/01

1. Dado el equilibrio:

$$H_2O(g) + C(s) \Longrightarrow CO(g) + H_2(g) \quad \Delta H > 0$$

Señale, razonadamente, cuál de las siguientes medidas produce un aumento de la concentración de monóxido de carbono:

- a) Elevar la temperatura.
- b) Retirar vapor de agua de la mezcla en el equilibrio.
- c) Introducir H₂ en la mezcla en equilibrio.
- 2. Se introduce una mezcla de 0,5 moles de H_2 Y 0,5 moles de I_2 en un recipiente de 1 litro y se calienta a la temperatura de 430 °C. Calcule:
 - a) Las concentraciones de H_2 , I_2 y HI en el equilibrio, sabiendo que, a esa temperatura, la constante de equilibrio Kc es 54,3 para la reacción:

$$H_2(g) + I_2(g) \Longrightarrow 2HI(g)$$

- b) El valor de la constante K_p a la misma temperatura.
- 3. Para una reacción hipotética: $A + B \implies C$, en unas condiciones determinadas, la energía de activación de la reacción directa es 31 kJ, mientras que la energía de activación de la reacción inversa es 42 kJ.
 - a) Represente, en un diagrama energético, las energías de activación de la reacción directa e inversa.
 - b) La reacción directa, es exotérmica o endotérmica? Razone la respuesta.
 - c) Indique cómo influirá en la velocidad de reacción la utilización de un catalizador.
- 4. Para la reacción:

$$2NO(g) \Longrightarrow N_2(g) + O_2(g)$$
 $\Delta H^{\circ} = -182 \text{ kJ}$

Indique razonadamente si las siguientes afirmaciones son verdaderas o falsas:

- a) La constante de equilibrio aumenta al adicionar NO.
- b) Una disminución de temperatura favorece la obtención de $N_2\,y\,O_2.$
- 5. En un recipiente de 1L, a 2000 K, se introducen 6.1×10^{-3} moles de CO_2 y una cierta cantidad de H_2 , produciéndose la reacción:

$$H_2(q) + CO_2(q) \longrightarrow H_2O(q) + CO(q)$$

Si cuando se alcanza el equilibrio, la presión total es de 6 atm, calcule:

- a) Los moles iniciales de H_2 .
- $\mbox{\bf b)}\;\;\mbox{Los moles en el equilibrio de todas las especies químicas presentes.}$

<u>Datos</u>: R = 0.082 atm L K^{-1} mol⁻¹. $K_c = 4.4$

6. Al calentar bicarbonato de sodio, NaHCO₃, en un recipiente cerrado se establece el siguiente equilibrio:

$$2NaHCO_3(s) \Longrightarrow Na_2CO_3(s) + H_2O(g) + CO_2(g)$$

Indique razonadamente, cómo se afectaría la posición del equilibrio si permaneciendo constante la temperatura:

- a) Se retira CO2 del sistema.
- b) Se adiciona H₂O al sistema.
- c) Se retira parte de NaHCO3 del sistema.
- 7. En la reacción: $Br_2(g) \Longrightarrow 2Br(g)$, la constante de equilibrio K_C , a 1200 °C, vale $1.04\cdot10^{-3}$
 - a) Si la concentración inicial de bromo molecular es 1 M, calcule la concentración de bromo atómico en el equilibrio.
 - b) ¿Cuál es el grado de disociación del Br₂?
- 8. La siguiente tabla presenta la variación de la constante de equilibrio con la temperatura para la síntesis del amoniaco según la reacción:

$$N_2(g) + 3H_2(g) \Longrightarrow 2NH_3(g)$$

Temperatura(°C)	25	200	300 400		500
K _c	6 · 10 ⁵	0,65	0,011	6,2·10 ⁻⁴	7,4·10 ⁻⁵

Indique, razonadamente, si las siguientes afirmaciones son verdaderas o falsas:

- a) La reacción directa es endotérmica.
- b) Un aumento de la presión sobre el sistema en equilibrio favorece la obtención de amoniaco.
- 9. En un recipiente de 10 litros se introducen 2 moles de compuesto A y 1 mol del compuesto B. Se calienta a 300 $^{\circ}C$ y se establece el siguiente equilibrio:

$$A(g) + 3B(g) \implies 2C(g)$$

Sabiendo que cuando se alcanza el equilibrio el número de moles de B es igual al de C. Calcule:

- a) Las concentraciones de cada componente en el equilibrio.
- **b)** El valor de las constantes de equilibrio K_C y K_P a esa temperatura.

Datos : $R = 0.082 \text{ atm} \cdot L \cdot K^{-1} \cdot \text{mol}^{-1}$.

10. En un recipiente de 2 litros que se encuentra a 25 °C, se introducen 0'5 gramos de N_2O_4 en estado gaseoso y se produce la reacción :

$$N_2O_4(q) \implies 2NO_2(q)$$

Calcule:

- a) La presión parcial ejercida por el N₂O₄ en el equilibrio.
- b) El grado de disociación del mismo.

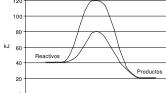
<u>Datos</u>: $K_P = 0,114$. Masas atómicas: N = 14; O = 16.

11. Para el siguiente equilibrio:

$$PCl_5(g) \Longrightarrow PCl_3(g) + Cl_2(g) \Delta H>0$$

Indique, razonadamente, el sentido en que se desplaza el equilibrio cuando:

- a) Se agrega cloro gaseoso a la mezcla en equilibrio.
- b) Se aumenta la temperatura.
- c) Se aumenta la presión del sistema.
- 12. A 200 °C y 2 atmósferas el PCl_5 se encuentra disociado en un 50%, según el siguiente equilibrio:


$$PCl_5(g) \longrightarrow PCl_3(g) + Cl_2(g)$$

Calcule:

- a) La presión parcial de cada gas en el equilibrio.
- **b)** Las constantes K_C y K_P a esa temperatura.

<u>Datos</u>: $R= 0.082 \text{ atm} \cdot L \cdot K^{-1} \cdot \text{mol}^{-1}$.

13. La figura muestra dos caminos posibles para una cierta reacción. Uno de ellos corresponde a la reacción en presencia de un catalizador:

- a) ¿Cuál es el valor de la energía de activación de la reacción catalizada?
- b) ¿Cuál es el valor de la entalpía de la reacción?
- c) ¿Qué efecto producirá un aumento de la temperatura en la velocidad de la reacción?

EJERCICIOS DE SELECTIVIDAD 01/02

1. En un matraz vacío se introducen igual número de moles de H_2 , y N_2 que reaccionan según la ecuación:

$$N_2(g) + 3 H_2(g) \Longrightarrow 2 NH_3(g)$$

Justifique si, una vez alcanzado el equilibrio, las siguientes afirmaciones son verdaderas o falsas:

- a) Hay doble número de moles de amoníaco de los que había inicialmente de N2.
- b) La presión parcial de nitrógeno será mayor que la presión parcial de hidrógeno.
- c) La presión total será igual a la presión de amoníaco elevada al cuadrado.
- 2. Al calentar $PCl_5(g)$ a 250 °C, en un reactor de 1 litro de capacidad, se descompone según:

$$PCl_5(g) \Longrightarrow PCl_3(g) + Cl_2(g)$$

Si una vez alcanzado el equilibrio, el grado de disociación es 0,8 y la presión total es 1 atm, calcule:

- a) El número de moles de PCl₅ iniciales.
- **b)** La constante K_D a esa temperatura.

<u>Dato</u>: $R = 0.082 \text{ atm} \cdot L \cdot K^{-1} \cdot \text{mol}^{-1}$.

3. El nitrógeno y el hidrógeno reaccionan según la siguiente ecuación química:

$$N_2(q) + 3 H_2(q) = 2 NH_3(q)$$
 . $\Delta H < 0$

Indique, razonadamente, qué ocurrirá cuando una vez alcanzado el equilibrio:

- a) Se añade N₂
- b) Se disminuye la temperatura
- c) Se aumenta el volumen del reactor, manteniendo constante la temperatura.
- **4**. En un recipiente de 10 L se hacen reaccionar, a $450^{\circ}C$, 0'75 moles de H_2 y 0'75 moles de I_2 , según la ecuación:

$$H_2(g) + I_2(g) \rightleftharpoons 2 HI(g)$$

Sabiendo que a esa temperatura $K_c = 50$, calcule en el equilibrio:

- a) El número de moles de H2, I2 y de HI.
- b) La presión total en el recipiente y el valor de K_D.

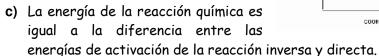
<u>Dato</u>: $R = 0'082 \text{ atm} \cdot L.K^{-1} \cdot \text{mol}^{-1}$.

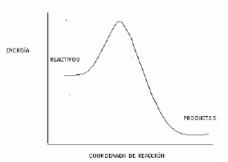
5. Sea el sistema en equilibrio

$$CaCO_3(s) \iff CaO(s) + CO_2(g)$$

Indique, razonadamente, si las siguientes afirmaciones son verdaderas o falsas:

- a) La presión total del reactor será igual a la presión parcial del CO2.
- **b)** K_p es igual a la presión parcial del CO_2 .
- c) K_p y K_c son iquales.


- **6**. En un recipiente de 1 L y a una temperatura de $800^{\circ}C$, se alcanza el siguiente equilibrio: $CH_4(g) + H_2O(g) \Longrightarrow CO(g) + 3H_2(g)$. Calcule:
 - a) Los datos que faltan en la tabla.


	[CH ₄]	[H ₂ O]	[CO]	[H ₂]
Moles iniciales	2,00	0,5		0,73
Variación en el nº de moles al alcanzar el equilibrio		- 0,4		
N° de moles en el equilibrio			0,4	

- b) La constante de equilibrio Kp.
- 7. En la figura se muestra el diagrama de energía para una hipotética reacción química.

Razone si son verdaderas o falsas las siguientes afirmaciones:

- a) La reacción directa es exotérmica.
- b) La energía de activación de la reacción directa es mayor que la energía de activación de la reacción inversa.

- 8. Una muestra de 6'53 g de NH_4HS se introduce en un recipiente de 4 L de capacidad, en el que previamente se ha hecho el vacío, y se descompone a $27^{\circ}C$ según la ecuación:

$$NH_4HS(s) \Longrightarrow NH_3(g) + H_2S(g)$$

Una vez establecido el equilibrio la presión total en el interior del recipiente es 0'75 atm. Calcule:

- a) Las constantes de equilibrio K_c y K_p.
- b) El porcentaje de hidrógenosulfuro de amonio que se ha descompuesto.

<u>Datos</u>: $R = 0'082 \text{ atm} \cdot L \cdot K^{-1} \cdot \text{mol}^{-1}$. Masas atómicas: H = 1, N = 14; S = 32.

9. A $25^{\circ}C$ el valor de la constante K_p es 0'114 para la reacción en equilibrio:

$$N_2O_4(g) \implies 2 NO_2(g)$$

En un recipiente de un litro de capacidad se introducen 0'05 moles de N_2O_4 a 25°C. Calcule, una vez alcanzado el equilibrio:

- a) El grado de disociación del N_2O_4 .
- b) Las presiones parciales de $N_2O_4\,y$ de $NO_2.$

Dato: $R = 0'082 \text{ atm} \cdot L \cdot K^{-1} \cdot \text{mol}^{-1}$.

- 10. Para la reacción: $CO_2(g) + C(s) \iff$ 2 CO(g), $K_p = 10$, a la temperatura de 815 °C. Calcule, en el equilibrio:
 - a) Las presiones parciales de CO2 y CO a esa temperatura, cuando la presión total en el reactor es de 2 atm.
 - b) El número de moles de CO_2 y de CO, si el volumen del reactor es de 3 litros.

 $\underline{\mathsf{Dato}} \colon \mathsf{R} = 0'082 \; \mathsf{atm} \cdot \mathsf{L} \cdot \mathsf{K}^{-1} \cdot \mathsf{mol}^{-1}.$

EJERCICIOS DE SELECTIVIDAD 02/03

1. Para la reacción en equilibrio:

$$SO_2CI_2(g) \Longrightarrow SO_2(g) + CI_2(g)$$

la constante Kp = 2'4, a 375 K.

A esta temperatura, se introducen 0'050 moles de SO_2CI_2 en un recipiente cerrado de 1 litro de capacidad. En el equilibrio, calcule:

- a) Las presiones parciales de cada uno de los gases presentes.
- b) El grado de disociación del SO₂CI₂ a esa temperatura.

Dato: R = 0.082 atm. L. K^{-1} mol⁻¹.

2. Dados los equilibrios:

$$3 F_2(g) + Cl_2(g) \Longrightarrow 2 CIF_3(g)$$

$$H_2(g) + Cl_2(g) \Longrightarrow 2 HCI(g)$$

$$2 NOCI(g) \Longrightarrow 2 NO(g) + Cl_2(g)$$

- a) Indique cuál de ellos no se afectará por un cambio de volumen, a temperatura constante.
- b) ¿Cómo afectará a cada equilibrio un incremento en el número de moles de cloro?
- c) ¿Cómo influirá en los equilibrios un aumento de presión en los mismos? Justifique las respuestas.
- 3. El cloruro de amonio se descompone según la reacción:

$$NH_4Cl(s) \Longrightarrow NH_3(q) + HCl(q)$$

En un recipiente de 5 litros, en el que previamente se ha hecho el vacío, se introducen 2,5 g de cloruro de amonio y se calientan a $300^{\circ}C$ hasta que se alcanza el equilibrio. El valor de K_p a dicha temperatura es $1,2\cdot 10^{-3}$. Calcule:

- a) La presión total de la mezcla en equilibrio.
- b) La masa de cloruro de amonio sólido que queda en el recipiente.

<u>Datos</u>: R = 0.082 atm. L. K^{-1} mol⁻¹. Masas atómicas: H = 1; N = 14; Cl = 35.5

- 4. a) Describa el efecto de un catalizador sobre el equilibrio químico.
 - b) Defina cociente de reacción Qc.
 - c) Diferencie entre equilibrio homogéneo y heterogéneo.
- 5. Para la reacción en equilibrio:

$$SnO_2(s) + 2 H_2(q) \Longrightarrow Sn(s) + 2 H_2O(q)$$

a 750°C, la presión total del sistema es 32,0 mm de Hg y la presión parcial del agua 23,7 mm de Hg. Calcule:

- a) El valor de la constante Kp para dicha reacción, a 750°C.
- b) El número de moles de vapor de agua y de hidrógeno presentes en el equilibrio, sabiendo que el volumen del reactor es de dos litros.

Dato: R = $0.082 \text{ atm} \cdot \text{L} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$.

6. En un recipiente de 5 litros se introducen 1,84 moles de nitrógeno y 1,02 moles de oxígeno. Se calienta el recipiente hasta 2000°C estableciéndose el equilibrio:

$$N_2(g) + O_2(g) \implies 2 NO(g)$$

En estas condiciones reacciona el 3% del nitrógeno existente. Calcule:

- a) El valor de Kc a dicha temperatura.
- b) La presión total en el recipiente, una vez alcanzado el equilibrio.

Dato: $R = 0.082 \text{ atm} \cdot L \cdot K^{-1} \cdot \text{mol}^{-1}$.

7. En un recipiente de 5 litros se introducen 0,28 moles de N_2O_4 a 50°C. A esa temperatura el N_2O_4 se disocia según:

$$N_2O_4(g) \implies 2NO_2(g)$$

Al llegar al equilibrio, la presión total es de 2 atm. Calcule:

- a) El grado de disociación del N2O4 a esa temperatura.
- b) El valor de Kp a 50°C.

Dato: $R = 0.082 \text{ atm} \cdot \text{L} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$.

8. Dado el equilibrio:

$$2 SO_2(g) + O_2(g) \Longrightarrow 2 SO_3(g) \Delta H < 0$$

- a) Explique cómo aumentaría el número de moles de SO_3 , sin adicionar ni eliminar ninguna de las sustancias presentes en el equilibrio.
- b) Escriba la expresión de Kp.
- c) Razone cómo afectaría al equilibrio la presencia de un catalizador.
- **9**. A $1200^{\circ}C$ el valor de la constante Kc es $1,04\cdot10^{-3}$ para el equilibrio:

$$Br_2(q) \Longrightarrow 2 Br(q)$$

- Si la concentración inicial de bromo molecular es 1 M, calcule:
- a) El tanto por ciento de Br_2 que se encuentra disociado.
- b) La concentración de bromo atómico en el equilibrio.

EJERCICIOS DE SELECTIVIDAD 03/04

1. Considérese el siguiente sistema en equilibrio:

$$SO_3(g) \Longrightarrow SO_2(g) + \frac{1}{2} O_2(g) \quad \Delta H > 0$$

Justifique la veracidad o falsedad de las siguientes afirmaciones:

- a) Al aumentar la concentración de oxígeno, el equilibrio no se desplaza porque no puede variar la constante de equilibrio.
- b) Al aumentar la presión total el equilibrio se desplaza hacia la izquierda.
- c) Al aumentar la temperatura el equilibrio no se modifica.
- 2. En un recipiente de 10 litros de capacidad se introducen 2 moles del compuesto A y 1 mol del compuesto B. Se calienta a $300^{\circ}C$ y se establece el siguiente equilibrio:

$$A(g) + 3 B(g) 2 C(g)$$

Cuando se alcanza el equilibrio, el número de moles de B es igual al de C. Calcule:

- a) El número de moles de cada componente en el equilibrio.
- b) El valor de las constantes Kc y Kp a esa temperatura.

Dato: R = 0'082 atm·L·K-1·mol-1.

- 3. El yoduro de amonio sólido se descompone en amoniaco y yoduro de hidrógeno, gases, según la ecuación: NH4I(s) NH3(g) + HI(g). A 673 K la constante de equilibrio Kp es O'215. En un matraz de 5 litros se introducen 15 g de NH4I sólido y se calienta a esa temperatura hasta que se alcanza el equilibrio. Calcule:
 - a) La presión total dentro del matraz, en el equilibrio.
 - b) La masa de NH4I que queda sin descomponer una vez alcanzado el equilibrio.

<u>Datos</u>: R = 0'082 atm·L·K-1·mol-1. Masas atómicas: H = 1; N = 14; I = 127.

4. En un recipiente de 10 litros a 800 K, se introducen 1 mol de CO(g) y 1 mol de $H_2O(g)$. Cuando se alcanza el equilibrio representado por la ecuación:

$$CO(g) + H_2O(g) \square CO_2(g) + H_2(g)$$

el recipiente contiene 0'655 moles de CO₂ y 0'655 moles de H₂. Calcule:

- a) Las concentraciones de los cuatro gases en el equilibrio.
- b) El valor de las constantes Kc y Kp para dicha reacción a 800 K.

Dato: $R = 0'082 \text{ atm} \cdot L \cdot K^{-1} \cdot \text{mol}^{-1}$.

- 5. Para el siguiente sistema en equilibrio: $SnO_2(s) + 2 H_2(g) 2 H_2O(g) + Sn(s)$ el valor de la constante Kp a 900 K es 1'5 y a 1100 K es 10. Razone si para conseguir una mayor producción de estaño deberá:
 - a) Aumentar la temperatura.
 - b) Aumentar la presión.
 - c) Adicionar un catalizador.
- 6. En un matraz de 2 litros se introducen 12 g de PCl_5 y se calienta hasta 300 °C. Al establecerse el siguiente equilibrio de disociación: $PCl_5(g)$ $Cl_2(g)$ + $PCl_3(g)$, la presión total de la mezcla es de 2'12 atm, a esa temperatura. Calcule:
 - a) El grado de disociación del PCl₅ en las condiciones señaladas.
 - **b)** El valor de Kp a 300 °C.

<u>Datos</u>: R = 0'082 atm·L·K⁻¹·mol⁻¹. Masas atómicas: P = 31; Cl = 35'5.

- 7. Para el siguiente sistema en equilibrio: $H_2(g) + I_2(g) 2 HI(g) \Delta H < 0$
 - a) Indique razonadamente cómo afectará al equilibrio un aumento de la temperatura.
 - b) Establezca la relación existente entre Kc y Kp para este equilibrio.
 - c) Si para la reacción directa el valor de Kc es 0'016 a 800 K, ¿cuál será el valor de Kc para la reacción inversa, a la misma temperatura?
- 8. En un recipiente de 4 litros, a una cierta temperatura, se introducen las cantidades de HCI, O_2 y CI_2 indicadas en la tabla, estableciéndose el siguiente equilibrio:

$$4 HCl(q) + O_2(q) \square 2 H_2O(q) + 2 Cl_2(q)$$

	HCI	O ₂	H ₂ O	Cl ₂
Moles iniciales	0'16	0'08	0	0'02
Moles en equilibrio	0'06			

Calcule:

- a) Los datos necesarios para completar la tabla.
- b) El valor de Kc a esa temperatura.
- 9. Se ha comprobado experimentalmente que la reacción 2 $A + B \rightarrow C$ es de primer orden respecto al reactivo A y de primer orden respecto al reactivo B.
 - a) Escriba la ecuación de velocidad.
 - b) ¿Cuál es el orden total de la reacción?
 - c) ¿Qué factores pueden modificar la velocidad de la reacción?

EJERCICIOS DE SELECTIVIDAD 04/05

1. Dado el siguiente sistema en equilibrio:

$$2 SO_2(g) + O_2(g) \implies 2 SO_3(g) \Delta H = -197,6 kJ$$

- a) Explique tres formas de favorecer la formación de $SO_3(g)$.
- b) Deduzca la relación entre las constantes K_c y K_D, para esta reacción.
- 2. A 1000 K se establece el siguiente equilibrio: $I_2(g) + H_2(g) \implies 2 HI(g)$ Sabiendo que cuando la concentración inicial de I_2 es 0'02 M, su grado de disociación es 2'14 %, calcule:
 - a) El valor de K_c a esa temperatura.
 - **b)** El grado de disociación del I_2 , cuando su concentración inicial es $5\cdot10^{-4}$ M.
- 3. El etano, en presencia de un catalizador, se transforma en eteno e hidrógeno, estableciéndose el siguiente equilibrio:

$$C_2H_6(g) \iff C_2H_4(g) + H_2(g)$$

A 900 K, la constante de equilibrio K_p es $5'1\cdot10^{-2}$. A la presión total de 1 atm, calcule:

- a) El grado de disociación del etano.
- b) La presión parcial del hidrógeno.
- **4.** El NO₂ y el SO₂ reaccionan según la ecuación: $NO_2(g) + SO_2(g)$ \square $NO(g) + SO_3(g)$ Una vez alcanzado el equilibrio, la composición de la mezcla contenida en un recipiente de 1 litro de capacidad es: 0'6 moles de SO₃, 0'4 moles de NO, 0'1 moles de NO_2 y 0'8 moles de SO₂. Calcule:
 - a) El valor de Kp , en esas condiciones de equilibrio.
 - **b)** La cantidad en moles de NO que habría que añadir al recipiente, en las mismas condiciones, para que la cantidad de NO_2 fuera 0'3 moles.
- 5. Considérese el siguiente sistema en equilibrio:

2NO(g)
$$\longrightarrow$$
 N₂(g) + O₂(g); \triangle H°=-182 kJ

Justifique la veracidad o falsedad de las siguientes afirmaciones:

- $\boldsymbol{a)}$ La constante de equilibrio, $\boldsymbol{K_{c}}$, aumenta al añadir NO.
- **b)** K_c aumenta con la temperatura.
- c) Una disminución de temperatura favorece la formación de $N_2(g)$ y $O_2(g)$.
- **6**. A 298 K se establece el equilibrio siguiente:

$$SHNH_4(s) \longrightarrow NH_3(g) + SH_2(g)$$

Sabiendo que la capacidad del recipiente es 100 litros y que a esa temperatura K_p = 0'108, calcule:

- a) La presión total ejercida por la mezcla gaseosa, una vez alcanzado el equilibrio.
- **b)** La cantidad de sólido que quedará sin reaccionar si la cantidad inicial de hidrogenosulfuro de amonio es 102 g.

<u>Datos</u>: $R = 0'082 \text{ atm} \cdot L \cdot K^{-1} \cdot \text{mol}^{-1}$. Masas atómicas: H = 1; S = 32; N = 14.

7. En la siguiente tabla se presentan los valores de la constante de equilibrio y la temperatura, para la síntesis del amoniaco: $N_2(g)+3$ $H_2(g)$ $\square \square 2$ $NH_3(g)$

Temperatura (°C)	25 200		300	400	500
Kc	6'0 · 10 ⁵	0'65	1'1 · 10 ⁻²	6'2·10 ⁻⁴	7'4 · 10 ⁻⁵

Justifique si las siguientes afirmaciones son verdaderas o falsas:

- a) La reacción directa es endotérmica.
- b) Un aumento de la presión favorece la obtención de amoniaco.
- 8. Cuando se calienta el pentacloruro de fósforo se disocia según:

$$PCl_5(g) \longrightarrow Cl_2(g) + PCl_3(g)$$

A 250°C, la constante Kp es igual a 1'79. Un recipiente de 1'00 dm³, que contiene inicialmente 0'01 mol de PCl_5 se calienta hasta 250°C. Una vez alcanzado el equilibrio, calcule:

- a) El grado de disociación del PCl5 en las condiciones señaladas.
- **b)** Las concentraciones de todas las especies químicas presentes en el equilibrio. Datos: $R = 0'082 \text{ atm} \cdot L \cdot K^{-1} \cdot \text{mol}^{-1}$.
- **9**. La ecuación de velocidad: $v = k \cdot [A]^2 \cdot [B]$ corresponde a la reacción química:

- a) Indique si la constante k es independiente de la temperatura.
- **b)** Razone si la reacción es de primer orden con respecto de A y de primer orden con respecto de B, pero de segundo orden para el conjunto de la reacción.

EJERCICIOS DE SELECTIVIDAD 05/06

- 1. La reacción: $A + 2B \rightarrow 2C + D$ es de primer orden con respecto a cada uno de los reactivos.
- a) Escriba la ecuación de velocidad.
- b) Indique el orden total de reacción.
- c) Indique las unidades de la constante de velocidad.
- 2. Para el sistema: $SnO_2(s) + 2H_2(g) \Longrightarrow 2H_2O(g) + Sn(s)$ el valor de la constante Kp es 1'5 a 900 K y 10 a 1100 K. Razone si para conseguir una mayor producción de estaño deberá:
- a) Aumentar la temperatura.
- b) Aumentar la presión.
- c) Añadir un catalizador.
- 3. Considere el siguiente sistema en equilibrio:

$$2 SO_3(q) \implies 2 SO_2(q) + O_2(q) \quad \Delta H > 0$$

Justifique la veracidad o falsedad de las siguientes afirmaciones:

- a) Al aumentar la concentración de oxígeno el equilibrio no se desplaza, porque no puede variar la constante de equilibrio.
- **b)** Un aumento de la presión total provoca el desplazamiento del equilibrio hacia la izquierda.
- c) Al aumentar la temperatura el equilibrio no se modifica.
- **4**. Considérese el siguiente sistema en equilibrio: $MX_5(g) \Longrightarrow MX_3(g) + X_2(g)$ A 200 °C la constante de equilibrio Kc vale 0'022. En un momento dado las concentraciones de las sustancias presentes son: $[MX_5] = 0'04 \text{ M}$, $[MX_3] = 0'40 \text{ M}$ y $[X_2] = 0'20 \text{ M}$.
- a) Razone si, en esas condiciones, el sistema está en equilibrio. En el caso en que no estuviera en equilibrio ¿cómo evolucionaría para alcanzarlo?
- b) Discuta cómo afectaría un cambio de presión al sistema en equilibrio.
- **5**. Al calentar pentacloruro de fósforo a 250 °C, en un reactor de 1 litro de capacidad, se descompone según: $PCl_5(g) \Longrightarrow Cl_2(g) + PCl_3(g)$ Si una vez alcanzado el equilibrio, el grado de disociación es 0'8 y la presión total de una atmósfera, calcule:
- a) El número de moles de PCl5 iniciales.
- b) La constante Kp a esa temperatura.

Dato: $R = 0'082 \text{ atm} \cdot L \cdot K^{-1} \cdot \text{mol}^{-1}$.

- **6**. A 670 K, un recipiente de un litro contiene una mezcla gaseosa en equilibrio de 0'003 moles de hidrógeno, 0'003 moles de yodo y 0'024 moles de yoduro de hidrógeno, según: $I_2(g) + H_2(g) \Longrightarrow 2 HI(g)$
- a) El valor de Kc y Kp.
- **b)** La presión total en el recipiente y las presiones parciales de los gases de la mezcla. <u>Dato</u>: R = 0'082 atm·L·mol-1.

7. En un recipiente de 10 litros de capacidad se introducen 2 moles del compuesto A y 1 mol del compuesto B. Se calienta a 300 $^{\circ}C$ y se establece el siguiente equilibrio:

$$3A(g) + B(g) \rightarrow 2C(g)$$

Cuando se alcanza el equilibrio, el número de moles de B es igual al de C. Calcule:

- a) El número de moles de cada componente de la mezcla.
- b) El valor de las constantes Kc y Kp a esa temperatura.

Dato: R = 0'082 atm·L· K^{-1} ·mol⁻¹.

- **8**. Se establece el siguiente equilibrio: $C(s) + CO_2(g) \rightarrow 2CO(g)$ A 600 °C y 2 atmósferas, la fase gaseosa contiene 5 moles de dióxido de carbono por cada 100 moles de monóxido de carbono, calcule:
- a) Las fracciones molares y las presiones parciales de los gases en el equilibrio.
- b) Los valores de Kc y Kp a esa temperatura.

Dato: R = 0'082 atm·L· K^{-1} ·mol⁻¹.

- 9. Un recipiente de un litro de capacidad, a 35 °C, contiene una mezcla gaseosa en equilibrio de 1'251 g de NO_2 y 5'382 g de N_2O_4 , según: N_2O_4 (g) \implies 2 NO_2 (g) Calcule:
- a) Los valores de las constantes Kc y Kp a esa temperatura.
- b) Las presiones parciales de cada gas y la presión total en el equilibrio.

Datos: R = 0'082 atm·L· K^{-1} ·mol⁻¹. Masas atómicas: N = 14; O = 16.

EJERCICIOS DE SELECTIVIDAD 06/07

1. En un recipiente cerrado se establece el equilibrio:

$$2C(s) + O_2(q) \implies 2CO(q) \Delta H = -221 \text{ kJ}$$

Razone cómo varía la concentración de oxígeno:

- a) Al añadir C(s).
- b) Al aumentar el volumen del recipiente.
- c) Al elevar la temperatura.
- 2. Considérese el siguiente sistema en equilibrio: $C(s) + CO_2(q) \implies 2CO(q)$
 - a) Escriba las expresiones de las constantes K_c y K_D.
 - b) Establezca la relación entre ambas constantes de equilibrio.
- 3. Dado el equilibrio: $N_2(g) + 3H_2(g) \Longrightarrow 2NH_3(g)$ $\Delta H^\circ = -92'22 \text{ kJ}$ Justifique la influencia sobre el mismo de:
 - a) Un aumento de la presión total.
 - b) Una disminución de la concentración de N_2 .
 - c) Una disminución de la temperatura.
- 4. El cloruro de nitrosilo se forma según la reacción:

$$2NO(g) + Cl_2(g) \implies 2NOCl(g)$$

El valor de Kc es $4'6\cdot10^4$ a 298 K. Cuando se alcanza el equilibrio a esa temperatura, en un matraz de 1'5 litros hay 4'125 moles de NOCl y 0'1125 moles de Cl_2 . Calcule:

- a) La presión parcial de NO en el equilibrio.
- **b)** La presión total del sistema en el equilibrio.

<u>Datos</u>: $R = 0'082 \text{ atm} \cdot L \cdot K^{-1} \cdot \text{mol}^{-1}$.

5. El hidrogenosulfuro de amonio, NH4SH se descompone a temperatura ambiente según:

$$NH_4SH(g) \implies NH_3(g) + H_2S(g)$$

El valor de K_p es 0'108, a 25 °C. En un recipiente, en el que se ha hecho el vacío, se introduce una muestra de NH₄SH a esa temperatura, calcule:

- a) La presión total en el equilibrio.
- **b)** El valor de K_{c} a esa temperatura.

<u>Datos</u>: $R = 0'082 \text{ atm} \cdot L \cdot K^{-1} \cdot \text{mol}^{-1}$.

6. En un recipiente de 1 litro de capacidad, en el que previamente se ha hecho el vacío, se introducen 6 g de PCl_5 . Se calienta a 250 $^{\circ}C$ y se establece el siguiente equilibrio:

$$PCl_5(g) \Longrightarrow PCl_3(g) + Cl_2(g)$$

Si la presión total en el equilibrio es 2 atmósferas, calcule:

- a) El grado de disociación del PCl₅.
- **b)** El valor de la constante K_{p} a esa temperatura.

<u>Datos</u>: R = 0'082 atm L· K^{-1} ·mol⁻¹. Masas atómicas: P = 31; Cl = 35'5.

7. En un recipiente vacío se introduce cierta cantidad de NaHCO₃ y a 120°C se establece el siguiente equilibrio:

$$2NaHCO_3(s) \longrightarrow Na_2CO_3(s) + H_2O(g) + CO_2(g)$$

- Si la presión en el equilibrio es 1720 mm de Hg, calcule:
- a) Las presiones parciales de CO_2 y H_2O en el equilibrio.
- **b)** Los valores de las constantes K_c y K_p a esa temperatura.

Datos: $R = 0'082 \text{ atm.L } .K^{-1} \cdot \text{mol}^{-1}$.

- 8. En un matraz, en el que se ha practicado previamente el vacío, se introduce cierta cantidad de NaH CO_3 y se calienta a 100 $^{\circ}C$. Sabiendo que la presión en el equilibrio es 0'962 atm, calcule:
 - a) La constante Kp para la descomposición del NaHCO₃ , a esa temperatura, según: $2NaHCO_3(s) \Longrightarrow Na_2CO_3(s) + H_2O(q) + CO_2(q)$
- **b)** La cantidad de NaHCO₃ descompuesto si el matraz tiene una capacidad de 2 litros. Datos: R = 0'082 atm·L· K^{-1} ·mol⁻¹. Masas atómicas: Na = 23; C = 12; O = 16; H = 1.

EJERCICIOS DE SELECTIVIDAD 07/08

- 1. A una hipotética reacción química, $A + B \rightarrow C$, le corresponde la siguiente ecuación de velocidad: $v = k \cdot [A] \cdot [B]$. Indique:
- a) El orden de la reacción respecto de A.
- b) El orden total de la reacción.
- c) Las unidades de la constante de la velocidad.
- 2. Para el proceso Haber $N_2(g) + 3H_2(g) \iff 2NH_3(g)$, el valor de Kp es 1'45·10⁻⁵, a 500°C. En una mezcla en equilibrio de los tres gases, a esa temperatura, la presión parcial de H_2 es 0'928 atmósferas y la de N_2 es 0'432 atm. Calcule:
- a) La presión total en el equilibrio.
- b) El valor de la constante Kc.

Datos: $R = 0'082 \text{ atm} \cdot L \cdot K^{-1} \cdot \text{mol}^{-1}$.

3. En un recipiente de 200 mL de capacidad, en el que previamente se ha hecho el vacío, se introducen 0'40 g de N_2O_4 . Se cierra el recipiente, se calienta a 45 °C y se establece el siguiente equilibrio: N_2O_4 (g) \Longrightarrow 2 NO_2 (g)

Sabiendo que a esa temperatura el N_2O_4 se ha disociado en un 41'6 %, calcule:

- a) El valor de la constante Kc.
- b) El valor de la constante Kp .

Datos: R = 0'082 atm·L·K⁻¹·mol⁻¹. Masas atómicas: N = 14; O = 16.

4. Al calentar cloruro de amonio en un recipiente cerrado se establece el siguiente equilibrio:

$$NH_4Cl(s) \iff HCl(g) + NH_3(g)$$

Justifique cómo afectará a la posición del equilibrio:

- a) Una disminución de la presión total.
- b) La extracción de amoniaco del recipiente.
- c) La adición de NH4Cl sólido.
- **5**. Dado el equilibrio: $4HCl(g) + O_2(g) \iff 2H_2O(g) + 2Cl(g) \qquad \Delta H^\circ = -115 \text{ kJ}$ Razone el efecto que tendrá sobre éste cada uno de los siguientes cambios:
- a) Aumentar la temperatura.
- b) Aumentar la presión total.
- c) Añadir un catalizador.
- **6**. El óxido de mercurio (II) contenido en un recipiente cerrado se descompone a 380°C según: $2HqO(s) \rightleftharpoons 2Hq(q) + O_2(q)$

Sabiendo que a esa temperatura el valor de Kp es 0'186, calcule:

- a) Las presiones parciales de O_2 y de Hg en el equilibrio.
- b) La presión total en el equilibrio y el valor de Kc a esa temperatura.

Dato: $R = 0'082 \text{ atm} \cdot L \cdot K^{-1} \cdot \text{mol}^{-1}$.

- 7. Escriba las expresiones de las constantes Kc y Kp y establezca la relación entre ambas para los siguientes equilibrios:
 - a) $2HgO(s) \rightleftharpoons 2Hg(l) + O_2(g)$
 - **b)** $CO(g) + Cl_2(g) \iff COCl_2(g)$
- 8. En un matraz de 7'5 litros, en el que se ha practicado previamente el vacío, se introducen 0'50 moles de H_2 y 0'50 moles de I_2 y se calienta a 448 °C, estableciéndose el siguiente equilibrio: $H_2(g) + I_2(g) \Longrightarrow 2HI(g)$ Sabiendo que el valor de Kc es 50, calcule:
- a) La constante Kp a esa temperatura.
- b) La presión total y el número de moles de cada sustancia presente en el equilibrio.
- 9. Dado el equilibrio: $2HI(g) \longleftrightarrow H_2(g) + I_2(g)$ Si la concentración inicial de HI es 0'1 M y cuando se alcanza el equilibrio, a 520°C, la concentración de H_2 es 0'01 M, calcule:
- a) La concentración de I2 y de HI en el equilibrio.
- b) El valor de las constantes Kc y Kp a esa temperatura.