QUÍMICA 2º BACHILLERATO

HOJA Nº 2

DISOLUCIONES: CONCENTRACIÓN DE LAS MISMAS

- 1.-/ Se disuelven 7 g de cloruro de sodio en 43 g de agua. Determine la concentración centesimal de la disolución, así como la fracción molar de cada componente y la molalidad. DATOS: Masas atómicas relativas: H = 1; O = 16; Na = 23; Cl = 35,5.
- **2.-**/ Halle el volumen de disolución 0,2 M de ácido sulfúrico que contiene 2,50 g de ácido. ¿Cuál es su concentración centesimal (% en masa) si la densidad de la disolución es 1,22 g/mL? *DATOS*: Masas atómicas relativas: H = 1; O = 16; S = 32.
- **3.-**/ Un ácido clorhídrico concentrado contiene 35,2% en peso de ácido, y su densidad es 1,175 g/mL. Determine el volumen de este ácido que se necesita para preparar 3 litros de ácido 2 M. Explique cómo se prepara.

DATOS: Masas atómicas relativas: H = 1; C1 = 35,5.

- **4.-**/ Se añaden 6 g de cloruro de potasio a 80 g de una disolución de cloruro potásico al 12% en masa. Halle el tanto por ciento en masa de KCl de la nueva disolución resultante.
- **5.-**/ ¿Cuál es la masa de sacarosa (C₁₂H₂₂O₁₁) que se ha de disolver en agua para preparar 250 g de una disolución al 20%?
- **6.-/** Calcule la masa de sulfato de magnesio heptahidratado, MgSO₄·7 H₂O, que hay que añadir a 1000 g de agua para obtener una disolución al 15% en peso de sulfato anhidro. DATOS: Masas atómicas relativas: H = 1; O = 16; Mg = 24,3; S = 32.
- 7.-/ Haga los cálculos y explique cómo prepararía:
 - a) 500 mL de disolución de sulfato de Cr (III) 0,25 M a partir de otra que contiene un 35% en masa de dicha sal y cuya densidad es 1,42 g/mL.
 - **b)** 250 mL de una disolución de hidróxido de potasio 0,50 M a partir de hidróxido de potasio sólido.
 - c) 100 mL de una disolución de ácido nítrico 0,2 M a partir de una disolución de ácido nítrico 6 M.

DATOS: Masas atómicas relativas: H = 1; Cr = 52; O = 16; S = 32; K = 39,1.

- **8.-**/ Se dispone de dos disoluciones de sulfito de sodio, la primera 1,5 M y la segunda 4 M. Se mezclan 500 mL de la primera y 300 mL de la segunda con 200 mL de agua. Calcule la molaridad y normalidad de la nueva disolución final.
- 9.-/ La concentración de ácido clorhídrico de un jugo gástrico es 0,15 M.
 - a) ¿Cuántos gramos de ácido hay en 100 mL de ese jugo?
- **b)** ¿Qué masa de hidróxido de aluminio será necesaria para neutralizar el ácido anterior? *DATOS*: Masas atómicas relativas: H = 1; Cl = 35,5; Al = 27; O = 16.
- **10.-**/ Se toman 25 mL de un ácido sulfúrico de densidad 1,84 g/cm³ y del 96% de riqueza en masa y se le adiciona agua hasta 250 mL.
 - a) Calcule la molaridad de la disolución resultante.
 - **b)** Describa el material de laboratorio necesario y el procedimiento a seguir para preparar la disolución.

DATOS: Masas atómicas relativas: H = 1; O = 16; S = 32.

- 11.-/ Se dispone de un ácido clorhídrico del 35% de riqueza en masa y densidad 1,20 g/mL.
 - a) Calcule la molaridad de la disolución.
 - **b)** ¿Qué volumen se ha de tomar para preparar 100 mL de disolución 0,5 M de ácido clorhídrico?
 - c) Describa el material necesario y el procedimiento a seguir en su preparación.

DATOS: Masas atómicas relativas: H = 1; Cl = 35,5.

- 12.-/ Se dispone en el laboratorio de hidróxido de potasio sólido del 95% de riqueza en masa.
 - a) ¿Qué masa de KOH hemos de pesar para preparar 500 mL de disolución 1 M?
 - b) Describa el material necesario y el procedimiento a seguir en su preparación.

DATOS: Masas atómicas relativas: H = 1; O = 16; K = 39,1.

- **13.-/ a)** Calcule la masa de hidróxido de sodio sólido del 80% de pureza en masa, necesaria para preparar 250 mL de disolución acuosa 0,025 M.
- **b)** Explique el procedimiento para preparar la disolución, indicando el material necesario. DATOS: Masas atómicas relativas: H = 1; O = 16; Na = 23.
- **14.-/** Se preparan 250 mL de disolución 1,5 M de ácido nítrico a partir de un ácido nítrico comercial del 67% en peso y densidad 1,40 g/mL.
 - **a)** Calcule la molaridad del ácido concentrado y el volumen necesario para preparar los 250 mL de disolución de ácido nítrico 1,5 M.
 - **b)** Describa el procedimiento a seguir y el material de laboratorio a utilizar para preparar la disolución anterior.

DATOS: Masas atómicas relativas: H = 1; O = 16; N = 14.

- **15.-/** De un frasco que contiene el producto comercial "agua fuerte" (HCl del 25% en peso y densidad 1,09 g/mL), se toman con una pipeta 20 mL y se vierten en un matraz aforado de 200 mL, enrasando con agua hasta ese volumen.
 - a) Determine la molaridad en HCl del "agua fuerte".
 - b) Calcule la molaridad de la disolución diluida.
 - c) Determine el volumen necesario para preparar 100 mL de disolución 0,2 M de HCl.
 - d) Describa el material necesario y el procedimiento a seguir en su preparación.

DATOS: Masas atómicas relativas: H = 1; C1 = 35,5.

16.-/ Se prepara en el laboratorio un litro de disolución 0,5 M de ácido clorhídrico a partir de uno comercial contenido en un frasco en cuya etiqueta se lee:

Pureza = 35% en masa; Densidad = 1,15 g/mL; $Masa\ molecular = 36,5$ g/mol.

- a) Calcule el volumen necesario de ácido concentrado para preparar la disolución.
- b) Describa el proceso que ha seguido y el material de laboratorio empleado.
- 17.-/ Se desea preparar 1 litro de una disolución de ácido nítrico 0,2 M a partir de un ácido nítrico comercial de densidad 1,50 g/mL y 33,6% de pureza en masa.
 - a) ¿Qué volumen deberemos tomar de la disolución comercial?
 - **b)** Explique el procedimiento que seguiría para su preparación y nombre el material necesario para ello.

DATOS: Masas atómicas relativas: H = 1; O = 16; N = 14.

- **18.-**/ Se mezclan 200 mL de una disolución 1 M de hidróxido de sodio con 150 mL de disolución 0,5 M de dicha base. Calcule:
 - a) La concentración molar de la nueva disolución.
 - b) La concentración, en gramos por litro, de la disolución resultante.

DATOS: Masas atómicas relativas: H = 1; O = 16; Na = 23.

- 19.-/ Tenemos 250 mL de una disolución de KOH 0,2 M.
 - a) ¿Cuántos moles de KOH hay disueltos?
 - **b)** ¿Cuántos gramos de KOH hay disueltos?
 - c) Describa el procedimiento e indique el material necesario para preparar la disolución.

DATOS: Masas atómicas relativas: H = 1; O = 16; K = 39,1.

- **20.-**/ Una disolución acuosa de ácido clorhídrico tiene una riqueza en masa del 35% y una densidad de 1,18 g/cm³. Calcule:
 - a) El volumen de esa disolución que debemos tomar para preparar 500 mL de disolución 0,2 M de HCl.
 - **b)** El volumen de disolución de NaOH 0,15 M necesario para neutralizar 50 mL de la disolución diluida del ácido.

DATOS: Masas atómicas relativas: H = 1; Cl = 35,5.

- **21.**-/ Una disolución de ácido acético tiene un 10% en peso de riqueza y una densidad de 1,05 g/mL. Calcule:
 - a) La molaridad de la disolución.
 - **b)** La molaridad de la disolución preparada llevando 25 mL de la disolución anterior a un volumen final de 250 mL mediante la adición de agua destilada.

DATOS: Masas atómicas relativas: H = 1; C = 12; O = 16.

- **22.-**/ A temperatura ambiente, la densidad de una disolución de ácido sulfúrico del 24% de riqueza en masa es 1,17 g/mL. Calcule:
 - a) Su molaridad.
 - **b)** El volumen de disolución necesario para neutralizar 100 mL de disolución 2,5 M de hidróxido de potasio.

DATOS: Masas atómicas relativas: H = 1; S = 32; O = 16.

- **23.**-/ Una disolución acuosa de alcohol etílico (etanol), tiene una riqueza del 95% y una densidad de 0,90 g/mL. Calcule:
 - a) La molaridad de esa disolución.
 - **b)** Las fracciones molares de cada componente.

DATOS: Masas atómicas relativas: H = 1; C = 12; O = 16.

- **24.-**/ Una disolución acuosa de ácido fosfórico, a 20°C, contiene 200 g/L del citado ácido. Su densidad a esa temperatura es 1,15 g/mL. Calcule:
 - a) La concentración en tanto por ciento en peso.
 - **b)** La molaridad.

DATOS: Masas atómicas relativas: H = 1; O = 16; P = 31.

- **25.-**/ Se diuelven 30 g de hidróxido de potasio en la cantidad de agua necesaria para preparar 250 mL de disolución.
 - a) Calcule su molaridad.
 - **b)** Se diluyen 250 mL de esa disolución hasta un volumen doble. Calcule el número de iones potasio que habrá en 50 mL de la disolución resultante.

DATOS: Masas atómicas relativas: K = 39; O = 16; H = 1.

- **26.-**/ Una disolución acuosa de ácido sulfúrico tiene una densidad de 1,05 g/mL, a 20°C, y contiene 147 g de ese ácido en 1500 mL de disolución. Calcule:
 - a) La fracción molar de soluto y de disolvente de la disolución.
 - **b)** ¿Qué volumen de la disolución anterior hay que tomar para preparar 500 mL de disolución 0,5 M del citado ácido?

DATOS: Masas atómicas relativas: S = 32; O = 16; H = 1.

- **27.-**/ Una disolución acuosa de CH₃COOH, del 10% en masa, tiene 1,055 g/mL de densidad. Calcule:
 - a) La molaridad.
 - **b)** Si se añade un litro de agua a 500 mL de la disolución anterior, ¿cuál es el porcentaje en peso de CH₃COOH de la disolución resultante? Suponga que, en las condiciones de trabajo, la densidad del agua es 1 g/mL.

DATOS: Masas atómicas relativas: C = 12; O = 16; H = 1.

- **28.-**/ Se prepara 1 L de disolución acuosa de ácido clorhídrico 0,5 M a partir de uno comercial de riqueza 35% en peso y 1,15 g/mL de densidad. Calcule:
 - a) El volumen de ácido concentrado necesario para preparar dicha disolución.
 - **b)** El volumen de agua que hay que añadir a 20 mL de HCl 0,5 M, para que la disolución pase a ser 0,01 M. Suponga que los volúmenes son aditivos.

DATOS: Masas atómicas relativas: H = 1; C1 = 35,5.

- **29.**-/ En una botella de ácido clorhídrico concentrado figuran los siguientes datos: 36% en masa, densidad 1,18 g/mL. Calcule:
 - a) La molaridad de la disolución y la fracción molar del ácido.
 - **b)** El volumen de este ácido concentrado que se necesita para preparar un litro de disolución 2 M.

DATOS: Masas atómicas relativas: H = 1; O = 16; C1 = 35,5.

- **30.-**/ Se preparan 25 mL de una disolución 2,5 M de sulfato de hierro(II).
 - a) Calcule cuántos gramos de sulfato de hierro(II) se utilizarán para preparar la disolución.
 - b) Si la disolución anterior se diluye hasta un volumen de 450 mL, ¿cuál será la molaridad de la disolución?

DATOS: Masas atómicas relativas: O = 16; S = 32; Fe = 56.

- **31.-**/ Calcule la molaridad de una disolución preparada mezclando 150 mL de ácido nitroso 0,2 M con cada uno de los siguientes líquidos:
 - a) Con 100 mL de agua destilada.
 - b) Con 100 mL de una disolución de ácido nitroso 0,5 M.
- 32.-/ Se dispone de ácido nítrico concentrado de densidad 1,505 g/mL y riqueza 98% en masa.
 - a) ¿Cuál será el volumen necesario de este ácido para preparar 250 mL de una disolución 1 M?
 - **b)** Se toman 50 mL de la disolución anterior, se trasvasan a un matraz aforado de 1 L y se enrasa posteriormente con agua destilada. Calcule los gramos de hidróxido de potasio que son necesarios para neutralizar la disolución preparada.

DATOS: Masas atómicas relativas: H = 1; N = 14; O = 16; K = 39.

- **33.-**/ Se ha preparado una disolución en un matraz aforado de 500 mL introduciendo 5 mL de HCl concentrado del 36% y densidad 1,18 g/mL, 250 mL de HCl 1,5 M y la cantidad suficiente de agua hasta enrasar el matraz. Calcule:
 - a) La concentración, en gramos por litro, del ácido concentrado.
 - b) La molaridad de la disolución preparada.

DATOS: Masas atómicas relativas: H = 1; Cl = 35.5. Se supone que los volúmenes son aditivos.

- **34.-**/ La etiqueta de un frasco de ácido clorhídrico indica que tiene una concentración del 20% en peso y que su densidad es 1,1 g/mL.
 - a) Calcule el volumen de este ácido necesario para preparar 500 mL de HCl 1,0 M.
 - **b)** Se toman 10 mL del ácido más diluido y se le añaden 20 mL del más concentrado, ¿cuál es la molaridad del HCl resultante?

DATOS: Masas atómicas relativas: H = 1; C1 = 35,5. Se asume que los volúmenes son aditivos.

- **35.-**/ Se dispone de 500 mL de una disolución acuosa de ácido sulfúrico 10 M y densidad 1,53 g/mL.
 - a) Calcule el volumen que se debe tomar de este ácido para preparar 100 mL de una disolución acuosa de ácido sulfúrico 1,5 M.
 - **b)** Exprese la concentración de la disolución inicial en tanto por ciento en masa y en fracción molar de soluto.

DATOS: Masas atómicas relativas: H = 1; O = 16; S = 32.

- **36.-/** a) ¿Qué volumen de HCl del 36% en peso y densidad 1,17 g/mL se necesita para preparar 50 mL de una disolución de HCl del 12% de riqueza en peso y de densidad 1,05 g/mL?
 - **b)** ¿Qué volumen de una disolución de Mg(OH)₂ 0,5 M sería necesario para neutralizar 25 mL de la disolución de HCl del 12% de riqueza en peso y de densidad 1,05 g/mL?

DATOS: Masas atómicas relativas: H = 1; Cl = 35,5.

- 37.-/ Una disolución acuosa de ácido nítrico 15 M tiene una densidad de 1,40 g/mL. Calcule:
 - a) La concentración de dicha disolución en tanto por ciento en masa de ácido nítrico.
 - **b)** El volumen de la misma que debe tomarse para preparar 1 L de disolución de ácido nítrico 0,5 M.

DATOS: Masas atómicas relativas: H = 1; N = 14; O = 16.

- **38.-**/ Se prepara una disolución disolviendo 0,6 g de hidróxido de sodio en agua hasta completar un volumen de 500 mL de disolución.
 - a) Determine la concentración molar de la disolución obtenida.
 - **b)** Calcule el volumen de agua que hay que añadir a 100 mL de la disolución anterior para obtener una disolución de NaOH 3,16·10⁻³ mol·L⁻¹.

DATOS: Masas atómicas relativas: H = 1; O = 16; Na = 23.

- **39.-**/ El agua fuerte es una disolución acuosa que contiene un 25% en masa de HCl y tiene una densidad de 1,09 g·mL⁻¹. Se diluyen 25 mL de agua fuerte añadiendo agua hasta un volumen final de 250 mL. Calcule:
 - a) La concentración molar de la disolución concentrada.
 - b) La concentración molar de la disolución diluida.

DATOS: Masas atómicas relativas: H = 1; Cl = 35,5.

- **40.-**/ Se preparan 187 mL de una disolución de ácido clorhídrico a partir de 3 mL de un ácido clorhídrico comercial de 37% de riqueza en masa y densidad 1,184 g/mL. Determine:
 - a) La molaridad de la disolución del ácido clorhídrico comercial.
 - b) La concentración molar de la disolución preparada.

DATOS: Masas atómicas relativas: H = 1; Cl = 35,5.

- **41.-**/ Una disolución acuosa de hidróxido de potasio de uso industrial tiene una composición del 40% de riqueza en masa y una densidad de 1,515 g/mL. Determine:
 - a) La molaridad de esta disolución.
 - **b)** El volumen (en mL) de disolución de hidróxido de potasio industrial necesario para preparar 10 L de disolución acuosa de hidróxido de potasio 0,1 mol/L.

DATOS: Masas atómicas relativas: H = 1; O = 16; K = 39.

- **42.-/** El hidróxido de sodio, comúnmente conocido como sosa cáustica, se emplea en disoluciones acuosas a altas concentraciones para desatascar tuberías. Se tiene una disolución comercial de este compuesto con una densidad a 20°C de 1,52 g/mL y una riqueza en masa del 50%. Determine:
 - a) La concentración molar de la disolución comercial y su fracción molar de soluto.
 - **b)** El volumen (en mL) necesario de esta disolución comercial para preparar 20 L de una disolución cuya concentración sea de 400 mg·L⁻¹.

DATOS: Masas atómicas relativas: H = 1; O = 16; Na = 23.

- **43.-**/ Se quiere preparar 500 mL de disolución acuosa de amoniaco (NH₃) 0,1 M a partir de amoniaco comercial de 25 % de riqueza y una densidad de 0,9 g·mL⁻¹.
 - a) Determine el volumen de amoniaco comercial necesario para preparar dicha disolución.
 - b) Calcule la concentración en gramos por litro de la disolución de amoniaco comercial.

DATOS: Masas atómicas relativas: H = 1; N = 14.

- **44.-/** Una disolución comercial de hidróxido de potasio indica en su etiqueta una composición de un 40 % de riqueza y densidad de 1,51 g·mL⁻¹. Determine:
 - a) La molaridad de la disolución comercial de hidróxido de potasio y el volumen de la disolución de hidróxido de potasio comercial necesario para preparar 10 L de una disolución diluida de hidróxido de potasio 0,5 M.
 - **b)** La fracción molar de hidróxido de potasio de la disolución comercial y su concentración en gramos por litro.

DATOS: Masas atómicas relativas: H = 1; O = 16; K = 39.

- **45.-**/ Se preparan 250 mL de una disolución acuosa de HCl a partir de 2 mL de una disolución de HCl comercial de densidad 1,38 g·mL⁻¹ y 33% de riqueza en masa. Calcule:
 - a) La concentración en g·L⁻¹ de la disolución de HCl comercial.
 - b) La molaridad de la disolución preparada.

DATOS: Masas atómicas relativas: H = 1; C1 = 35,5.

- **46.-/ a)** Se prepara una disolución tomando 2 mL de ácido nítrico 15 M y añadiendo agua hasta un volumen total de 500 mL. Determine la concentración molar de la disolución preparada.
 - **b)** Determine la molaridad de una disolución de un hidróxido de potasio comercial del 40% de riqueza en masa y una densidad de 1,51 g·mL⁻¹.

DATOS: Masas atómicas relativas: H = 1; O = 16; K = 39.

- **47.-**/ El ácido acetilsalicílico (R-COOH) de masa molar 180 g·mol⁻¹, es el principio activo de la aspirina, uno de los medicamentos más usados en el mundo por sus propiedades analgésicas, antiinflamatorias y antiplaquetarias.
 - a) ¿Qué cantidad de ácido acetilsalicílico debe pesarse de un bote de reactivo comercial con una riqueza del 98% para preparar 100 mL de una disolución 0,5 M?
 - **b)** Indique qué materiales de laboratorio de la siguiente Tabla utilizaría para preparar esta disolución.

Tabla. Materiales de laboratorio

Matraz aforado	Matraz de fondo redondo	Embudo de decantación	Bureta	Vaso de precipitado	Espátula
11-250	ODE OF THE		• 74	## 1995 100rd - 60	

